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Abstract

The e�ect of harmonic excitation on suspension bridges is examined as a �rst step towards the
understanding of wind� and possibly certain kinds of earthquake� excitation upon such struc�
tures� The Lazer�McKenna suspension bridge model is studied completely for the �rst time
by using a methodology which has been successfully applied to models of rocking blocks and
other free�standing rigid structures� An unexpectedly rich dynamical structure is revealed
in this way� Conditions for the existence of asymptotic periodic responses are established�
via a complicated nonlinear transcendental equation� A two part Poincar�e map is derived
to study the orbital stability of such solutions� Numerical results are presented which il�
lustrate the application of the analytical procedure to �nd and classify stable and unstable
solutions� as well as determine bifurcation points accurately� The richness of the possible
dynamics is then illustrated by a menagerie of solutions which exhibit fold and �ip bifurca�
tions� period doubling� period adding and sub	super�harmonic coexistence of solutions� The
solutions are shown both in the phaseplane� and as Poincare map �xed points under pa�
rameter continuation using the package AUTO� Such results illustrate the possibility of the
coexistence of 
dangerous� large amplitude responses at the same point of parameter space
as 
safe� solutions� The feasibility of experimental veri�cation of the results is discussed�

KEYWORDS� suspension bridges� Lazer�McKenna model� nonlinear dynamics� Poincar�e maps�

subharmonic orbits� AUTO continuation� piecewise linear ODEs�

� Introduction

In this paper� we consider the e�ect of harmonic excitation on suspension bridges as a �rst stage

towards the understanding of the action of wind �and perhaps certain kinds of earthquake�

upon such structures� In particular� our interest lies in the role of the one sided sti�ness of

the hangers �between roadbed and cable� in the resultant transverse and torsional motions�

One source of motivation was the work of Lazer 	 McKenna and others �Lazer 	 McKenna


��� Glover� Lazer 	 McKenna 
���� Lazer 	 McKenna 
���� Lazer 	 McKenna 
��
� Choi�

Jen 	 McKenna 
��
� Jacover 	 McKenna 
���� on the modelling of suspension bridges� They

consider the bridge deck to be a one�dimensional vibrating beam of length L connected to the

main suspension cable by stays and hinged at each end� The stays are treated as one�sided

springs� That is� they are assumed to provide a linear restoring force if stretched but to o�er

no resistance to compression� If de�ection of the main cable is neglected� the following �scaled�

equation for the downward de�ection u�x� t� of the bridge deck is obtained

utt � uxxxx � �put � ku� �W �x� � F �x� t�� �
�
�






with the hinged boundary conditions

u��� t� � u�L� t� � uxx��� t� � uxx�L� t� � �� �
���

�We will describe our preferred scaling in x ��� The righthand side of �
�
� includes the �small�
wind resistance term put� k as the spring constant �u� �� maxfu� �g�� W �x� as the weight
per unit length and F �x� t� as the forcing term� Lazer 	 McKenna �Lazer 	 McKenna 
����

introduce the one�sided spring as a nonlinear mechanism which may account for such wind

related disasters as the collapse of the bridge at Tacoma Narrows in 
��� �Bleich� McCullough�

Rosecrans 	 Vincent 
���� Farquharson 
����� We shall show �amongst other things� that large

amplitude subharmonic responses can occur for small amplitude excitations across open intervals

of parameter values� This �broad band� mechanism for bridge collapse seems more plausible

than one based on resonance� This latter explanation has no longer any currency within the

engineering community either �Billah 	 Scanlan 
��
�� but opinion remains strongly divided

as to the details of any replacement �Peterson 
���� Petroski 
��
� McKenna 
����� Scanlan

and co�workers �Billah 	 Scanlan 
��
� prefer to note which mode appears to lose stability to

the torsional motion and then pose a two degree of freedom oscillator� whose coe�cients are

matched with certain experimental or �eld measurements� It may be� that in future studies�

such an oscillator will be derivable via centre manifold�amplitude equation techniques as the

appropriate low dimensional model� In the meantime� there exists no explicit mechanism for the

transitions between essentially one and two dimensional motions� or the reductions of the full

dynamics to the postulated oscillator�

We use a similar model to �Lazer 	 McKenna 
���� but provide the �rst complete analysis

of this work by applying the machinery developed by Hogan �Hogan 
���� Hogan 
���� Hogan


���a� Hogan 
���b� Hogan 
���� to the analysis of piecewise linear ODEs arising from �
�
�


��� via separation of the variables� This approach reveals� for the �rst time� a rich dynamical

structure which will prove valuable in further studies� Such a model is a plausible �rst step on

the road to understanding systematically the large scale oscillations of a bridge like the Tacoma

Narrows and the loss of stability to a torsional mode� Clearly the one�sided spring e�ect is highly

important in bridges undergoing torsion and this two�dimensionality will be incorporated in

future work� However� until the simplest asymmetric model is better understood� it seems over�

ambitious to study a �more physical� case� Moreover� the solutions obtained and understood in

the one dimensional model will be used as a basis for accurate continuation in a model including

torsion� in order to the yield explicit paths in parameter space between torsional and vertical

motions� which are the ultimate aim of this work�

Conditions for the existence of asymptotic periodic responses to the piecewise linear ODE model

are established in x � and �� The �rst set is for simple preloaded orbits� and the second� for full
phase�space orbits� involves the derivation of a complicated nonlinear transcendental equation�

A two part Poincar�e map is derived to study the orbital stability of the latter class of solutions�

Numerical results are presented which illustrate the application of the analytical procedure to

�nd and classify stable and unstable solutions� as well as determine bifurcation points accurately�

The richness of the possible dynamics is shown by a menagerie of solutions which show fold

�



and �ip bifurcations� period doubling� period adding and sub�super�harmonic coexistence of

solutions� This is done by a combination of direct simulation of the ODEs and parameter

continuation of �xed points of an appropriate Poincar�e map� The possibility of experimental

veri�cation of these results is also discussed�

� The Piecewise Linear ODE and its Scaling

As has been described� the bridge is modelled by a beam with hinged end boundary conditions�

The full� dimensional �eld equation is �Timoshenko 
���� Thomson 
����

Mutt �EIuxxxx � ��ut � �k�u� �W �x� � F �x� t�� ���
�

where u � � is downwards de�ection�M is the mass per unit length� EI the �exural rigidity �that

is� the product of the beam�s Young�s modulus and the second moment of the cross�sectional

area�� �� is viscous�wind damping� k� is the Young�s modulus of the stay� W is the weight

distribution and F is the external forcing� The boundary conditions are given by equation �
����

Equation ���
� is �rst simpli�ed by the �no�node� approximation� That is�

F �x� t� � B� sin��t sin
�x

L
� W �x� � W � sin

L

�
� �����

Certainly� it is reasonable for a �rst approach to the problem to consider just this basic mode�

Moreover� Scanlan �Billah 	 Scanlan 
��
� describes how for the Tacoma Narrows Bridge disas�

ter� it was this mode that apparently �rst lost stability to torsional oscillations� See also �Glover

et al� 
���� Lazer 	 McKenna 
����� Next we separate variables as follows

u�x� t� � y�t� sin
�x

L
� �����

where y � � is de�ection downwards� The natural scalings of time and length

�t �

�
EI

M

����
t� �x �

�
�

L

�
x� �����

are then introduced� These di�er from those chosen in �Lazer 	 McKenna 
���� since we

have scaled L out of the problem in order to isolate those dynamics associated with the hanger

sti�ness asymmetry� It also removes the singular behaviour which would occur if L was increased

appreciably beyond �� The use of scaling ����� allows the geometric comparison of numerically

computed orbits and the direct physical interpretation of numerical results in terms of the type

of suspension bridge being modelled� For this reason� we use these �physical� parameters in x ��
Dropping hats� we obtain the transformed equations

y�� � ��y� � �k � 
�y � W �B sin �t� y � �� �����

y�� � ��y� � y � W �B sin �t� y � ��

�



where the prime denotes di�erentiation with respect to t� and the nondimensional constants are

de�ned by

� �
��

�
p
EIM

� k �
k�

EI
� � � ��

�
M

EI

����
� W �

W �

EI
� B �

B�

EI
� �����

Equations ����� are� of course� similar to those that have been studied in the impact oscillator

literature by� for example� Shaw �Shaw 	 Holmes 
���� Shaw 
���a� Shaw 
���b�� Thomp�

son �Thompson� Bokian 	 Gha�ari 
����� Whiston �Whiston 
��a� Whiston 
��b� Whis�

ton 
���� Hogan �Hogan 
����� Budd �Budd� Dux 	 Cli�e 
���� Budd 	 Dux 
���� Nord�

mark �Nordmark 
��
� Stensson 	 Nordmark 
���� and many others� �See also the special issue

of Phil� Trans� Roy� Soc� edited by �Bishop 
����� for a wide range of the current theoretical

and experimental work in the area�� The basic techniques developed for the treatment of those

piecewise linear ordinary di�erential equations are applied here� However� the nonzero preload

W cannot be removed by simple translation� for example� and we stress that equations �����

do not reduce to any previously publishes case� Consequently� we include some details of the

analysis� To organise e�ciently the solutions obtainable by direct computation� and to make any

numerical search more e�ective� we begin by studying simple �asymptotic� periodic responses

analytically� Then we consider the stability of these solutions� In this way� other asymptotic

trajectories can be classi�ed and realized as the result of bifurcations from the simple periodic

orbits� Note� too� that because of the physical scenario we are modelling� it is periodic orbits

rather than chaotic ones that are of interest�

For simplicity in the subsequent analysis� we introduce the parameters F � B�W and m �

k � 
 � 
 and scale W �y � y� We proceed to solve �rst for �y � �� We de�ne �z�t� � �y��t� and

denote the solutions in this half of phase space by the � subscript� Initial conditions at a time

to are also imposed� namely

�y��to� � yo� �z��to� � zo� ����

The explicit solutions to governing equations are then given by

�y��t� �



m
� � sin�t � 	 cos�t� e��to�t�

�
�yo � 


m
� �so � 	co� cos

p
m� ���t� to�

� ��yo � zo � �

m
� 
so � �co��m� ������� sin

p
m� ���t� to�

�
� �����

�z��t� � �� cos�t� 	� sin�t � e��to�t�
�
�zo � ��co � 	�so� cos

p
m� ���t� to�

� �
� �zo �myo � �so � �
co��m� ������� sin
p
m� ���t� to�

�
�

where co � cos�to� so � sin �to� and the other parameters are de�ned by

� �
F �m� ���

�m� ���� � ������
� 	 � � ���F

�m� ���� � ������
� �����

� �
F��m� ��� � ���

�m� ���� � ������
� 
 � � F��m� ���

�m� ���� � ������
�

� �
F �m� � ��m� �������

�m� ���� � ������
�

�



The solutions for �y � �� denoted �y�� �z� respectively� can be obtained from ����� by setting

m � 
 in all expressions and replacing instances of to by t�� zo by z�� co by c� and so by s��

In the sequel� we will discuss a range of solutions and their bifurcations� and it is appropriate

to introduce a classi�cation scheme for these orbits� Following �Hogan 
����� we call a periodic

asymptotic response an �� n��solution if the trajectory passes the positive z�axis  times before

the motion repeats� and that during that motion� n periods of forcing occur� This notation is

closely related to the two types of Poincar�e map that we will use� There is the stroboscopic map S
de�ned in the phaseplane for a �xed phase which acts on the position and velocity� Alternatively�

there is the �impact� map P � which maps the phase and velocity upon intersection with fy � ��
z � �g� That is� one records the phase and velocity as the beam passes through the rest state

downwards� Both have their advantages� The stroboscopic map is easy to de�ne globally and is

a well understood tool in nonlinear oscillator problems� There are technical di�culties in making

the impact map well�de�ned� but it is better for understanding bifurcations such as grazes which

do not occur in smooth dynamical systems� Such issues are discussed in much greater detail

in �Whiston 
��a� Whiston 
���� Foale 	 Bishop 
���� Nordmark 
��
� Nordmark 
���� Budd


����� Thus an �� n��orbit is a �xed point of P � and Sn�

� Existence of Preloaded Orbits

The �rst type of asymptotic response we analyse consists of those orbits which lie in only one

half of the phaseplane� �Simple phase plane arguments show that no closed orbit can lie entirely

above or below the y � � axis�� We begin with ��y�� �z�� solutions since the other possibility can

be excluded� From ������ the asymptotic form of the ��� 
��solution is

�y� � 


m
� � sin �t� 	 cos�t� �z� � �� cos�t� 	� sin �t� ���
�

with �possible� initial data given by �to� yo� zo� � ��� 
�m� 	� ���� Thus the locus of points in

phase space is in terms of the physical parameters �����

�
y� � W

m

��
�

�
z�
�

��
�

B�

�m� ���� � ������
� R�� �����

This describes an ellipse centred on �W�m� �� with horizontal displacement R and vertical

displacement �R� Thus a preloaded �and physically benign� orbit may exist provided that the

physical parameters satisfy

B �
W

m

q
�m� ���� � ������ � Bc� �����

We phrase the existence criterion in this way since in the numerical results section �x ��� we
concentrate on B and � variation as these are the easiest to investigate experimentally� To

illustrate ����� we set W � 
� k � 
� and � � ���
� and plot Figure 
� Variation of W shows

that this is a typical cross section� If B is �xed then there are three regimes� If B is very small

�
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Figure 
� Existence windows for preloaded orbits ��� W � k �xed� locus of Bc is shown��

�less than the minimum ��Wm���� occuring at linear resonance�� then the preloaded orbits

exists for all �� If B � W � then the preloaded orbits only exists for su�ciently large � �the

threshold is asymptotically B � W���m�� This is the case where the righthand side of �����

becomes two�signed� In between� there are two existence windows for preloaded orbits� and it

is in this regime that one of the main continuations in x � takes place� Conversely� if � is �xed�
there is always a lower existence window in B� Note that taking m � 
 in equation ����� shows

that no asymptotic response can lie entirely the lefthand side of the phase plane�

Before considering more complicated periodic responses� we note that the stability of the preloaded

orbits can be analysed by using the stroboscopic map S� where S � �yo� zo�� �y�� z�� � �f�yo�
zo�� g�yo� zo��� Evaluating at t � to �

��
� � we obtain the eigenvalues as �� � e�������c� � s��

where c� and s� are the evaluated circular functions� While it exists� the preloaded orbit will be

locally stable as a �xed point of the strobe map and hence as a periodic orbit of the di�erential

equation� We plot typical preloaded orbits and study their interaction and coexistence with

other kinds of orbits in x ��

� Existence of ��� n��Periodic Orbits

We now describe a largely analytical procedure for constructing �
� n� asymptotic periodic re�

sponses� In the next section� we show how the same calculation can be used to determine their

stability and bifurcation points� We consider that the response has settled down to a steady

motion� Suppose that at a time to� the trajectory passes through the P �Poincar�e plane at veloc�

ity zo �and thus yo � ��� Let t�� z� denote the phase and velocity when it passes through y � �

but with z � �� and let t�� z� denote the phase and velocity when it returns to the P �plane and

the periodic motion is completed� We refer to Figure �� The following conditions will then hold

�
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Figure �� Notation for a �
� n��asymptotic periodic response�

t� � to �
�n�

�
� ���
�

�y��t�� � �� �����

�z��t�� � �z��t��� �����

�y��t�� � �� �����

�z��t�� � �z��to�� �����

Thus we have � equations in � unknowns and� as might be hoped� we can indeed solve for them

all� Following �Hogan 
����� this is done by �rst solving for the time di�erence �t � t� � to�

Since the relationships ���
����� de�ne the quantities implicitly� they have to be manipulated

until �eventually� one obtains a nonlinear� transcendental equation for �t� This is then solved

numerically� All other orbit parameters can then be found via substitutions� Note that t� can be

replaced wherever it appears right from the outset via use of ���
�� Although the calculations are

lengthy� the results do provide an independent check on any numerical solutions� Moreover� the

more complicated solutions often have very small basins of attractions� especially near bifurca�

tions� It is extremely unlikely that suitable initial data for the numerical solver would be found

by chance� Our approach makes such orbits accessible and allows for some basic continuation

of solutions� Note that the output from this procedure has to be scaled appropriately before

comparison is made with numerical solutions of ������ because of the use of the extra scaling to

simplify algebra�

We sketch the solution procedure and state the results� but omit all details for the sake of

brevity� Equation ����� is rearranged to yield of the form

zo � F �ci� si��t� �����

where i � 
� � and F is also a function of the parameters ������ Similarly� using the fact that





t� � t� � �n��� ��t� we obtain an equation

z� � G�ci� si��t� ����

from ������ Next� with the help of ���������� we obtain other expressions for zo and z� so that

they may be eliminated to obtain equations solely in the ci and si� This yields a linear system

which we write as

Aco � Bso � Cc� �Ds� � �� �����

Eco � Fso � Gc� �Hs� �  � �����

The coe�cients are functions of the system parameters and �t and are given in the Appendix�

The dependence on t� is removed by writing t� � �t� to and expanding the circular functions�

We then solve for co and so and use the fact that c
�
o � s�o � 
 to �nally obtain the nonlinear

equation for �t�

�D�� � B� �� � �A� � C���� � �A�D� � B�C��� � �� ���
��

where the primed versions of coe�cients are given in the Appendix� Equation ���
�� can be

simpli�ed a little further but there is little advantage in doing so� In practice� the equation was

solved by bisection to 
� decimal places at each root within the relevant interval ��� �n����� A

double root corresponds to a fold bifurcation point and thus does not raise problems� Once �t

is known� we can obtain to from

to �



�
arctan

A� � C��
D��� B� � ���

�

One can then calculate all the individual times via use of ���
� and thence z� and zo from

the explicit solutions� Thus the solution can be plotted and initial data for a numerical solver

generated�

However� not all the roots generated in the interval are physical� Some are spurious �generated

by manipulations such as squaring or corresponding to �integrating� with an equation in the

wrong half of phase space� whilst others might be copies �up to phase�� This means that the

procedure requires some intervention to discard roots after plotting� When a period doubling

bifurcation occurs� a simple root of ���
�� ceases to lie in the interval �for a given n�� Locally�

the bifurcation should be �� n�� ��� �n� and hence we cannot with the above method calculate

analytically the period �n solution� Our approach could be extended to the case  � 
 but the

analysis is even more complicated and is not pursued here� Globally� of course� the solution

type is likely to change �see x ��� For a fold bifurcation� the two roots can be relevant� the
second corresponding to an unstable solution� �We plot such a solution in x �� which could not
be found by simple numerical simulation�� However� away from the bifurcation� the second root

can cease to be physical through a global event or simply because it passes outside the possible

interval� In fact� if the minimum of ���
�� lies under the endpoint of the feasible interval then

the unstable solution would never be admissible� even local to the bifurcation point�

�



� Orbital Stability of ��� n� Orbits

The asymptotic responses found by the �largely� analytical method described above need not be

stable� The presence of any perturbation �to the actual initial data� can lead the system settling

onto another �stable� orbit which may or may not be periodic� We carry out the stability analysis

in the manner of �Hogan 
����� However� we present an easier way of deriving expressions for

the determinant and trace of the pertinent Jacobian matrix� The analysis is carried out in the

phase plane using the Poincar�e map P � the periodic orbit is a �xed point of the map� We use the

previous notation for labelling a given periodic response� The stability of �xed point �and thus

the asymptotic response� is determined by the eigenvalues of the Jacobian DP �Guckenheimer

	 Holmes 
�����

The calculation ofDP proceeds in two parts� depending upon which equation is being integrated�

That is� we decompose the map P � P� � P� where

P� �

�
to
zo

�
��
�

t�
z�

�
�

�
f�to� zo�
g�to� zo�

�
� P� �

�
t�
z�

�
��
�

t�
z�

�
�

�
h�t�� z��
��t�� z��

�
� ���
�

We begin by studying P� whose Jacobian

DP� �

�
�f
�to

�f
�zo

�g
�to

�g
�zo

�
�����

has entries which may be determined by the implicit di�erentiation of the de�ning equation �����

for t� �and then that of z��� We use the Chain Rule to deduce that

�f

�to
� � 


�z��t�

����
t�t�

�
��y�
�to

�����
t�t�

�
�g

�t�
�

���y�
�t�

�����
t�t�

�f

�to
�

��z�
�to

����
t�t�

� �����

�f

�zo
� � 


�z��t�

����
t�t�

�
��y�
�zo

�����
t�t�

�
�g

�z�
�

���y�
�t�

�����
t�t�

�f

�zo
�

��z�
�zo

����
t�t�

� �����

When these equations are evaluated� the second derivative term in y� can be simpli�ed using

the di�erential equations ������ That is�

���y�
�t�

�����
t�t�

� ����z��t���m�y��t�� � 
 � Fs�� �����

One can evaluate the derivatives in the style of �Hogan 
���� and obtain the complicated expres�

sions given in the Appendix� From such formulae� one can obtain the entries of DP�� However�

if the focus is not on the speci�c expansion in a given direction� it is simplest to explicitly eval�

uate little of ��������� and� using the fact that �y��t�� � � to simplify ������ instead calculate the

determinant and trace more directly� The eigenvalue stability problem for P is given by

�� � �trace DP ��� �detDP� detDP�� � �� �����

where

trace DP �
�h

�t�

�f

�to
�

�h

�z�

�g

�to
�

��

�t�

�f

�zo
�

��

�z�

�g

�zo
� ����

�



Now for any simple trajectory through the phase plane�

detDP� � e����t zo
z�

�����

and similarly for detDP�� Combining these results for a complete periodic asymptotic response

and using ��
� we obtain that

detDP � e��n���� � 
 � �����

Hence there can be no Hopf�Neimark bifurcations to quasiperiodic motions and one eigenvalue

always remains inside the unit circle� Moreover� in general

detDP � e����t zo
z�

���
��

so that the determinant is unbounded at z� � �� Therefore P is not di�erentiable in this case�

�This is to be expected as the situation is analogous to that for �grazing bifurcations� in impact

oscillator theory�� As no Hopf�Neimark bifurcations occur� the stability boundaries are � � �
�
Using the method described above to calculate to calculate the trace� we �nd that a large number

of terms cancel to yield for a periodic asymptotic response

trace � e��n����
�
�cmc� � sms��m� 
� ����p

�
� ����m� ���

�
� ���

�

where� additionally�

c� � cos
p

� ���t� � t��� s� � sin

p

� ���t� � t��� ���
��

The divergence or fold bifurcation occurs when �trace �det� � 
 and the �ip or period doubling
bifurcation when �trace � det� � �
� Both these quantities can be evaluated and monitored
as we continue an analytical orbit �by hand�� using the method described previously to evaluate

all parameters and solution constants� Thus di�erent kinds of bifurcations can be found in

readiness for checking with the numerical integrations� In fact� for much of the time that the

orbit is stable� the eigenvalues form a complex conjugate pair on the circle whose squared radius

is given by the value of detDP � However� before either a fold or a �ip occurs� the eigenvalues

coalesce on R� The eigenvalues then move in opposite directions� so that after the bifurcation�

one lies inside the unit circle and one outside� However� the piecewise linear nature of the

system has repercussions for the prediction of the number of solutions� We have mentioned this

already for folds� if one has a stable solution close to a fold� the unstable solution may not exist�

Moreover� one would expect the �period�one� solution to persist at a �ip but this may not be

the case�

� Numerical Results

In this section� we trace out a number of paths in parameter space� In doing so� we try to

illustrate the rich dynamic behaviour possible� the coexistence of sub and superharmonic solu�

tions� period�doubling and �adding sequences� truncated cascades� fold bifurcations and global


�



bifurcations� We concentrate on a variation of B with all parameters �xed� and similarly� one

of �� We also exhibit a period�doubling cascade with k� The choice of parameters has been

somewhat arbitrary� When the beam experiments are undertaken� actual values for the physical

parameters can be properly estimated� Meanwhile� the analytical relationship between a full

bridge model and the beam model is unclear� At present� it seems productive and useful to �rst

understand the full range of dynamics in this simple model� The transitions between solution

types and patterns of coexistence are certainly more complicated that one might na!"vely think�

As mentioned in the introduction� parameter values given in this section correspond to the

natural scaling ����� of the ODEs in order to allow physical interpretation of all the diagrams

in terms of the type of suspension bridge we are modelling� We do not wish to unnecessarily

constrain the dynamic behaviour� and hence keep damping fairly small �usually � � ���
�

and the asymmetry in the system moderately large �typically k � 
��� We also wish to take

proper account of the preload W � it seems that it is when B � W that the complete cascades

are possible� It may be possible to investigate this analytically in the manner of Elvey and

Thompson �Elvey 
����� The slight parameter redundancy in our nondimensionalisation allows

us to identify in a transparent way when physically small forcing terms are associated with orbits

whose magnitude is much larger� However� this phenomenon occurs away from linear resonance

values� Indeed� at such values� behaviour is often relatively benign�

In the next two sections� we compare analytical results with those obtained by direct simulation

of equations ����� �using NAG routine d��cjf� and by parameter continuation using the package

AUTO �Doedel 	 Kerneves 
����� The AUTO code continues the periodic orbits as �xed points

of the Pm�Poincar#e map �with the relevant power� upon the z�axis intercept� The intermediate

swaps between �y�� z�� and �y�� z�� solutions are obtained internally by Newton iteration� and

passed as parameters to allow restarting of continuation� When the code reaches an end point

of an �� n� orbit� examination of the AUTO output usually allows the identi�cation of changes

in  via the extinction of a loop� or its passing into the righthand plane� The semi�analytical

method is used to generate the highly accurate initial periodic orbits and swap times required to

successfully begin continuation �especially of higher order orbits�� The nonlinear equation ���
��

for t� � to is itself unsuitable directly for exhaustive automated continuation� �For that reason�

Figures � 	 �� for example� were produced using AUTO��

��� Variation of �

For these variations� we set W � 
 and B � ���� The bifurcations in this direction all seem to

be folds� A given full phase space �� n��orbit exists in a window of � values� and disappears

through a fold at each end� However� the orbit geometry is not symmetric with respect to this

window� In line with the �ndings of �Lazer 	 McKenna 
��
� for the �oating beam model of

a ship� it is at the lower � end that the large scale oscillations may be found� For �Lazer 	

McKenna 
��
�� this �nding is important since the �oating beam is a common model in naval

architecture� and the indicated relationship clashes with a common safety procedure� These

large scale oscillations persist over a signi�cant parameter sub�window� With reference to the
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Figure �� Subharmonic coexistence of �
� 
� and �
� ���orbits �� � ���
� k � 
�� � � �� W � 
�
B � �����

suspension bridge model� we emphasize that they are not the result of narrow linear resonance�

We begin with a �
� ���orbit at � � �� Via the analysis of x �� we �nd that possible initial data
for this orbit is the S�Poincar�e point �t� y� z� � ���������� ����
���
��� ��������� �of
course� P�map initial data with y � � cannot be directly used�� In addition� x � assures us
that this orbit is stable� Direct numerical integration con�rms these �gures in full� For the sake

of brevity� we abbreviate numerical values in the sequel� The simplest� e�ective way to move

around parameter space with the numerical solver �as opposed to AUTO� is to use the Poincar�e

point as the starting conditions for a slightly di�erent value of �� and then integrate until a new

asymptotically stable trajectory is found� At the same point in parameter space� we can also

�nd a �
� 
� orbit of which the �
� ���solution is a subharmonic� Both are shown in Figure ��

In this and all subsequent phaseplanes� strobe points corresponding to intervals of ��� �rather

than ����� are shown� This is in order that for low n �m� n� orbits� the speed of tracing out

each part of the orbit is more evident�

The �
� 
��orbit is �at this moment� a small amplitude orbit whereas the �
� ���orbit is a large

scale motion with an amplitude � times the magnitude of the forcing term� If we continue the

�
� �� orbit� we �nd that it undergoes fold bifurcations at � � ���� and � � ����� Local to these

bifurcations� we thus have at least three solutions coexisting� the third being an unstable �
� ��

orbit� Note that the stable eigenvalues sit on a circle of changing radius as they tend toR� prior

to passing through �
� according to ������ Throughout this window� the n � 
 orbit persists

but it passes entirely into the right hand plane �to become a ��� 
��solution when � � ����� see
x ��� Figure � illustrate the relative sizes of the two kinds of orbits at either end of the n � �
existence window�

The calculations of x � show that the preloaded orbit exists for all larger �� What happens if
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Figure �� Comparison of coexisting subharmonics near to fold points� �a� � � ������ �b�
� � �������

the �
� 
��orbit is continued by decreasing �$ The theory indicates that it disappears through

a fold bifurcation when � � 
��� In this case� the expansion is even more dramatic� the

y displacement is highly asymmetric� and the amplitude is up to �� times the magnitude of

the forcing �see Figure ��� This �
� 
��orbit coexists with a small preloaded ��� 
��orbit which

appears �x �� when � � �����
Apart from any other �unstable� solutions� the symmetric �
� 
��orbit can also coexist with a

superharmonic asymmetric �
� 
��orbit which is close in size to the preloaded orbit� This �extra�

�
� 
��orbit appears when � � 
��� and has a loop in the righthand side of phase space� �In

Figure � �a�� we show only the nonstandard �
� 
��orbit with the preloaded orbit� the usual �
� 
�

involves displacements up to � in magnitude�� As the superharmonic is continued by decreasing

� further� it undergoes a �period�adding bifurcation sequence �in �� That is� the inner loop

crosses y � � to form a ��� 
� orbit when � � 
���� a di�erent type of subharmonic coexistence
for the �standard� �
� 
��orbit than previously �see Figure � �b���

Using the method of x �� it is straightforward to �nd higher order subharmonics� As expected�
these are to be found in existence windows at higher values of �� For example� there is a �
� ���

orbit which exists between fold bifurcations at � � ���� and � � ���� This hence initially

coexists with the preloaded and �
� ���orbits with which we began this section� The variation

of amplitude is as before� but again� by increasing n� the maximum amplitude is reduced �see

Figure ��

The next set of �gures were obtained using AUTO and give a more global view of the transitions�

as well as uncovering new phenomena� In Figure �� all the �rst three regular harmonics are

shown� and the increase in size with decreasing frequency is dramatic� �Dashed lines indicate

unstable orbits�� Note that the z�axis intercept is not the maximum z displacement� Observe�


�



�a� �b�

-15

-10

-5

0

5

10

15

-15 -10 -5 0 5

(d
y/

dt
)

y

Phase plane

(1,1) orbit
(1,1) strobe pts

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

(d
y/

dt
)

y

Phase plane

preloaded orbit
(2,1) orbit

(2,1) strobe pts

Figure �� Multiple coexistence close to the �
� 
��orbit fold bifurcation point �� � 
����

�a� �b�

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

(d
y/

dt
)

y

Phase plane

preloaded orbit
nonstd (1,1)-orbit
nonstd strobe pts

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.2 -0.1 0 0.1 0.2 0.3 0.4

(d
y/

dt
)

y

Phase plane

(3,1) orbit
(3,1) strobe pts

Figure �� �a� Superharmonic coexistence of full orbits� Nonstandard �
� 
��orbit at � � 
����
�b� ��� 
� orbit arising through period adding �� � ������


�



�a� �b�

-3

-2

-1

0

1

2

3

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

(d
y/

dt
)

y

Phase plane

(1,3) orbit
(1,3) strobe pts

-1

-0.5

0

0.5

1

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

(d
y/

dt
)

y

Phase plane

(1,3) orbit
(1,3) strobe pts

Figure � Higher subharmonics � a �
� ���orbit �a� near lower fold � � ������� �b� near upper
fold � � ������
�

too� that for any �� n� orbit we only plot one point per orbit to simplify the diagram� This

point corresponds to a particular crossing which is representative of its amplitude� In Figure ��

we focus in on the appearance of the primary �
�
� harmonic from the preloaded orbit �PL��

with the asymmetric orbits appearing to the left at lower values of �� Of course� the preloaded

orbit appears as the z � � axis since there is no intercept� Note� too� that the use of AUTO has

revealed the additional coexistence of two stable� symmetric �
�
� orbits between the PL point

and the �rst change of stability at a limit point �LP�� This had not been observed by much

direct numerical simulation� but had been suspected since we know the preloaded orbit to be

stable�

In Figure 
�� we focus on the asymmetric orbits� �The isola is labelled in a clockwise fashion��

For the second of these� the �period�adding� is extended to include a ��� 
� orbit �shown in

Figure � �b��� Moreover� the isolas in these �gures do not physically cross�They maybe unfolded

by plotting the parameter variation against both the z axis intercept and the phase of the

solution� In Figure 

� this is shown for the regular third harmonic�

��� Variation of B

With the variation of B� one often encounters� in addition to folds� period doubling bifurcations�

�In this section� and the next� note that the eigenvalues which predict bifurcation lie on a �xed

circle prior to coalescence�� To illustrate this� we start with a �transverse� variation to the

standard �
� 
��orbit path treated above� We denote this as the primary branch in what follows�

We begin with � � � and B � ���� First� we increase B �Figure 
��� The �rst period�doubling

bifurcation occurs at B � ����� that is� �
� 
� � ��� ��� Before then the orbit has coexisted
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First Two Asymmetric Superharmonics
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� A crossed isola is unfolded by introducing the phase into the bifurcation diagram�






with� for example� a ��� ���orbit �Figure 
 �a��� Locally� the period�doubling bifurcation is

�
� 
� � ��� �� but the inner loop shrinks as B increases further and the outer loop stretches

increasingly asymmetrically into the lefthand plane� When B � ���� the inner loop hits the

origin and undergoes another period doubling bifurcation to an �incipient� ��� ���orbit� However�

as the inner loop bifurcates� one new loop moves into the left hand plane and the other� entirely

into the righthand plane� Hence instead a ��� ��� ��� �� bifurcation is actually observed� This

is an instance where a bifurcation is complicated by the piecewise linear nature of the system�

However� unlike the fold bifurcations� the orbits �though nonlinear� do not have large�scale

amplitudes relative to the forcing�

In smooth bifurcation theory� one would now expect a cascade of such bifurcations� In impact

oscillator models� they are often interrupted by grazing bifurcations� In our case� two things

happen� First� once B � ���� a loop has passed through y � � and a ��� ��� ��� �� transition

has taken place� Then the period doubling cascade is truncated by the �reverse� bifurcation to

a �
� ���orbit when B � ����
� This bifurcation point can be analytically determined� As B is

increased further� this orbit undergoes no other bifurcation� When B � 

��� the extra loop in
the right hand plane disappears and a curve enclosing a convex region remains�

In Figure 
�� we show the same transition as produced by the AUTO code� Note the sharp

increase in the z axis intercept which is associated with the gain of orbit convexity �and symme�

try� in phasespace of the �
��� orbit� The period doubling is shown in more detail in Figure 
��

where the transitions of the unstable orbit are also indicated� The total e�ect of the transition

is turn a �rst into a second harmonic� In addition� the proximity of the LPs on the ����� branch

to the PD point indicate that nearby in parameter space is a �codimension two� generalised �ip

or Bautin bifurcation�

If we decrease B from the start value of ���� the behaviour is rather di�erent� The �
� 
��orbit

disappears through a fold bifurcation at B � ������ Note that once B � ��
�� a preloaded

orbit also exists� In Figure 
�� we show the stable and unstable solutions which exist near the

fold point �the di�erence �Tr�Det� is ����� as well as the preloaded solution� In Figure 
�� we
show the hysteresis curve as produced by AUTO� As for the � variation� there is restabilisation

of the �
�
� orbit through a fold in line with the calculations of x �� It was this feature that was
subjected to extended parameter variation of the full PDE in �Choi et al� 
��
��

However� coexisting with the primary branch are a number of more exotic trajectories� As just

two examples� for B � ���� we show in Figure 
�a� a ��� ���orbit and when B � �� a ��� ���orbit

�Figure 
 �b��� One would expect to �nd such higher order orbits for B � W � However�

what becomes clear� with the use of a continuation code like AUTO� is that they persist at least

to the regime where B � W � that they are interlaced with the primary branch and that they

appear to be involved in the global bifurcation structure of the primary branch� For example�

in Figures 
�� 
�� we show a high order transition and its relationship to the primary branch�

The labelling is clockwise in Figure 
�� Again� we are close to a codimension two bifurcation

point� In Figure ��� we show an almost symmetric pair of solution branches of ��� �� �and

��� ��� solutions� The loss of symmetry is probably due to the use of the z axis intercept as
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Primary branch: variation with B

Bifurcation diagram

Oscillatory Forcing

Z Axis Intercept

0 . 0 2 . 5 5 . 0 7 . 5 10 . 0 12 . 5 15 . 0 17 . 5

0 .

1 .

2 .

3 .

4 .

5 .

6 .

7 .

Figure 
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Secondary solutions with the primary branch
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Figure 
�� Relation of high order isola in Figure 
� to primary branch�

a measure of size in the bifurcation diagram� rather than a sup or L� norm� say� Note the

coexistence of two stable ����� orbits from di�erent solution branches� However� we were unable

to extend the branches beyond the indicated end points �EP�� which indicate some change in

the solution type �� n�� There was some evidence of a limit point very close to the ��� �� EP�

and similar structure on the other branches may have prevented AUTO from continuing period

doubled branches� for example� �AUTO cannot� on its own� detect and follow codimension two

bifurcations�� In Figure �
� we show coexistence of more exotic solutions� whose paths with

respect to the bifurcation parameter are themselves highly complicated� Again� we show the

primary branch for comparison�

��� Variation of k

Once B � W � the variation of k can yield �more� complete period doubling cascades relatively

easily� even with greater damping in the system� Perhaps� it is unsurprising that� with strong

forcing and increasing asymmetry in the system� exotic orbits can be obtained� We take � � �����

� � 
�W � ��
 B � 
 and increase k upwards from k � 
� The initial data for the �rst orbit was

found using the analytical methods� the �rst period doubling bifurcation occurs when k � ���
�analytically con�rmed�� As k is increased further� we obtain a sequence of periodic orbits with

increasing close bifurcation k�values of which we have observed

�
� 
�� ��� ��� ��� ��� ��� ��� �
�� ��� ���� 
��� � � � � ���
�

This transition is featured in Figure ��� note how the period doubling appears associated with

the intersection of loops with the z � � axis� Observe� too� the nonlinear dependence of the

��
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amplitude on the forcing for the bifurcating orbits� As for the truncated period doubling� that

the  entry of the orbit classi�cation is more volatile than the �subharmonic� label n� Yet the 

label remains important to distinguish full phase from �benign� preloaded orbits� However� this

parameter variation would be very di�cult to investigate within an experimental framework�

and hence we do not pursue it further here�

� Conclusions

As a �rst step to understand the role of the �one�sided� stay in suspension bridge dynamics�

a suspended beam model has been considered� This represents the most complete analysis

of the Lazer 	 McKenna model to date� We have revealed for the �rst time a great deal of

nonlinear dynamics which will provide valuable input to experiments and higher dimensional

models� Separation of variables was used to reduce the model to a piecewise linear ODE� which is

equivalent to a one�sided preloaded forced spring� a case not studied before nor reducible to one

that has� Methods have been given which enables two types of asymptotic periodic responses to

be calculated� The second approach can yield unstable solutions which are otherwise inaccessible

via direct numerical solution� A range of illustrative examples were then given which showed

how the analytical methods may be used to structure a search of parameter space by simulation

and continuation� and also the wide range of bifurcation phenomena and coexistence which are

possible� Experimental veri�cation of the results using a simple mechanical model is planned�

and we hope to be able to report on this in the future� The choice of parameter variations was

made with the problem of practical implementation in mind�

There is clearly plenty of scope for further analysis of this simple model� The basins of at�

traction of competing multiple solutions at a given point in parameter space have only been

described anecdotally� rather than mapped� One would also like a more global structure for the

coexistence possibilities� We have described one possible application of the continuation package

AUTO �Doedel 	 Kerneves 
����� But much remains open� For example� are there in�nitely

many isolas of either regular �
� n� subharmonics� and �m� 
� asymmetric superharmonics� or is

the number constrained like in the work of �Elvey 
����� And in the variation of B� the EPs of

the ��� �� branches appear to coincide with the �rst period doubling of the primary branch� are

some global dynamics responsible for this coincidence�

Recently� Fonda and co�workers �Fonda 	 Ramos 
��
� Fonda� Schneider 	 Zanolin 
����

have used a di�erent modi�cation of the Lazer�McKenna model� They postulate a minimum

height before slackening of the hangers� and �Brownjohn 
���� gives some support to this idea�

They then choose to reduce the number of parameters by imposing a static balance e�ectively

equivalent to a weightless bridge� �In addition� their analysis is largely concerned with the

zero dissipation case�� In future work� the cuto� height could be incorporated into the analysis

described here by modifying the separation of variables ����� with Heaviside functions� It is

also important to note that part of their analysis assumed some symmetry in the shape and

positioning of the orbits� None of the orbits we computed had any such symmetries� Other

��



authors �Choi 	 Jung 
��
� Choi� Jung 	 McKenna 
���� Choi et al� 
��
� have extended the

work of Lazer 	 McKenna� For example� rotatory inertia has been incorporated into some of

the theoretical results� We could do likewise� but the e�ect upon results is likely to be small�

Brownjohn �Brownjohn 
���� has also argued that� for two numerical case studies� the stay

sti�ness asymmetry is unimportant in the one dimensional motion� Of course� one might say

that these are just two examples and that in postulating interactions for the �nite element

model� one may be imposing undue constraints� More importantly� it says nothing about the

role of the asymmetry in determining stability and transitions� A number of modern long span

suspension bridges have used mono�duo cables with A�frame tower construction �Ostenfeld 	

Larsen 
����� This reduces the importance of torsional dynamics in which the in�uence of the

stays is most obvious� Nevertheless� from a theoretical perspective� it remains important to

determine design and safety boundaries to prevent over and �under� design in future�

There remains a gulf between the ODE model we have studied and the beam equation� and

an even larger one between that and a complete bridge model� However� it is to be hoped

that demonstrating the dynamic complexity of the simplest model is a useful task with some

relevance to more complicated ones� The priority is the inclusion of torsion via some route�

whether through PDE analysis or the coupling of ODE models� Whichever proves most fruitful�

it seems clear that the positive use of the piecewise linear nature of the system� along with

nonlinear dynamics� can provide new and useful information compared to the nonlinear analysis

employed by Lazer� McKenna and co�workers�
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Appendix

We �rst give the formulae for the coe�cients of the linear system ��������� solved in order to

determine �
� n��solutions� We �rst de�ne some preliminary parameters� Subscripts on the

parameters previously de�ned in ����� denote evaluation for �y� and �z�� and thus� for example�

m is set to unity in those de�nitions�

s� � sin
p

� ��

�n�

�
� c� � cos

p

� ��

�n�

�
� �A�
�

c� � cos
p

� ���t� s� � sin
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� ���t� �A���

� � c�s� � s�c�� � � c�c� � s�s�� �A���
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�� ��p


� ��

�
� %B � e��t

�
cm � �smp

m� ��

�
� �A���

� � �
� %B %A���� �A���

The required coe�cients are as follows�
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We now give the coe�cients of the Jacobian stability matrix ��������� for �
�n� orbits� We

obtain
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where

cm � cos
p
m� ���t� sm � sin

p
m� ���t� �A����
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